博客
关于我
数据分析工具Pandas基础--Series的索引操作
阅读量:280 次
发布时间:2019-03-01

本文共 776 字,大约阅读时间需要 2 分钟。

理论:

行索引:

按索引位置:ser_obj[pos]

按索引名称:ser_obj[‘label’]

切片索引:

按索引位置:ser_obj[2:4]

按索引名称:ser_obj[‘label1’: ‘label3’],注意,按索引名切片操作时,是包含终止

不连续索引:

ser_obj[ [‘label1’, ‘label2’, ‘label3’] ]

ser_obj[ [pos1, pos2, pos3] ]

 

实验:

第四节 Series的索引操作

In [1]:

 

 
import pandas as pd
import numpy as np

In [2]:

 

 
# 构建Series
ser_obj = pd.Series(range(5),index=['a','b','c','d','e'])
ser_obj

Out[2]:

a    0b    1c    2d    3e    4dtype: int64

行索引

In [7]:

 

 
ser_obj['b']
ser_obj.loc['b']

Out[7]:

1

In [4]:

 

ser_obj[1]
ser_obj.iloc[]

Out[4]:

1

切片索引

In [5]:

 

 
ser_obj[1:3]

Out[5]:

b    1c    2dtype: int64

In [6]:

 

# 注意区别
ser_obj['b':'d']

Out[6]:

b    1c    2d    3dtype: int64

不连续索引

In [8]:

 

ser_obj[[0,2,4]]

Out[8]:

a    0c    2e    4dtype: int64

In [9]:

 

 
ser_obj[['b','d']]

Out[9]:

b    1d    3dtype: int64

转载地址:http://mcla.baihongyu.com/

你可能感兴趣的文章
mysql 导入 sql 文件时 ERROR 1046 (3D000) no database selected 错误的解决
查看>>
mysql 导入导出大文件
查看>>
mysql 将null转代为0
查看>>
mysql 常用
查看>>
MySQL 常用列类型
查看>>
mysql 常用命令
查看>>
Mysql 常见ALTER TABLE操作
查看>>
MySQL 常见的 9 种优化方法
查看>>
MySQL 常见的开放性问题
查看>>
Mysql 常见错误
查看>>
MYSQL 幻读(Phantom Problem)不可重复读
查看>>
mysql 往字段后面加字符串
查看>>
mysql 快速自增假数据, 新增假数据,mysql自增假数据
查看>>
Mysql 报错 Field 'id' doesn't have a default value
查看>>
MySQL 报错:Duplicate entry 'xxx' for key 'UNIQ_XXXX'
查看>>
Mysql 拼接多个字段作为查询条件查询方法
查看>>
mysql 排序id_mysql如何按特定id排序
查看>>
Mysql 提示:Communication link failure
查看>>
mysql 插入是否成功_PDO mysql:如何知道插入是否成功
查看>>
Mysql 数据库InnoDB存储引擎中主要组件的刷新清理条件:脏页、RedoLog重做日志、Insert Buffer或ChangeBuffer、Undo Log
查看>>