博客
关于我
数据分析工具Pandas基础--Series的索引操作
阅读量:280 次
发布时间:2019-03-01

本文共 744 字,大约阅读时间需要 2 分钟。

理论:

在数据处理中,Series的索引操作是常见且重要的技能。以下是几种常见的索引方式:

行索引

行索引是通过行的位置来获取数据。Pandas中支持两种方式:

- **直接访问**:`ser_obj[pos]` - **标签访问**:`ser_obj['label']`

切片索引

切片索引用于获取一系列连续的行数据。Pandas支持两种切片方式:

- **位置切片**:`ser_obj[start:end]`,例如`ser_obj[1:3]`获取索引1和2的数据。 - **标签切片**:`ser_obj['label1':'label3']`,注意标签切片是包含终止的。

不连续索引

当需要获取非连续行数据时,可以使用列表形式的索引:

- **标签索引**:`ser_obj[['label1','label2','label3']]` - **位置索引**:`ser_obj[[0,2,4]]`

实验:

第四节 Series的索引操作

import pandas as pdimport numpy as np
# 构建Seriesser_obj = pd.Series(range(5), index=['a','b','c','d','e'])ser_obj
# 行索引示例ser_obj['b']   # 获取标签'b'对应的值ser_obj.loc['b']  # 同样获取标签'b'对应的值
# 切片索引示例ser_obj[1:3]  # 获取索引1和2的数据ser_obj['b':'d']  # 标签切片,包含'd'
# 不连续索引示例ser_obj[[0,2,4]]  # 通过位置获取不连续数据ser_obj[['b','d']]  # 通过标签获取不连续数据

转载地址:http://mcla.baihongyu.com/

你可能感兴趣的文章
NS图绘制工具推荐
查看>>
NT AUTHORITY\NETWORK SERVICE 权限问题
查看>>
NT symbols are incorrect, please fix symbols
查看>>
ntelliJ IDEA 报错:找不到包或者找不到符号
查看>>
NTFS文件权限管理实战
查看>>
ntko web firefox跨浏览器插件_深度比较:2019年6个最好的跨浏览器测试工具
查看>>
ntko文件存取错误_苹果推送 macOS 10.15.4:iCloud 云盘文件夹共享终于来了
查看>>
ntp server 用法小结
查看>>
ntpdate 通过外网同步时间
查看>>
ntpdate同步配置文件调整详解
查看>>
NTPD使用/etc/ntp.conf配置时钟同步详解
查看>>
NTP及Chrony时间同步服务设置
查看>>
NTP服务器
查看>>
NTP配置
查看>>
NUC1077 Humble Numbers【数学计算+打表】
查看>>
NuGet Gallery 开源项目快速入门指南
查看>>
NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
查看>>
nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
查看>>
Nuget~管理自己的包包
查看>>
NuGet学习笔记001---了解使用NuGet给net快速获取引用
查看>>