博客
关于我
数据分析工具Pandas基础--Series的索引操作
阅读量:280 次
发布时间:2019-03-01

本文共 744 字,大约阅读时间需要 2 分钟。

理论:

在数据处理中,Series的索引操作是常见且重要的技能。以下是几种常见的索引方式:

行索引

行索引是通过行的位置来获取数据。Pandas中支持两种方式:

- **直接访问**:`ser_obj[pos]` - **标签访问**:`ser_obj['label']`

切片索引

切片索引用于获取一系列连续的行数据。Pandas支持两种切片方式:

- **位置切片**:`ser_obj[start:end]`,例如`ser_obj[1:3]`获取索引1和2的数据。 - **标签切片**:`ser_obj['label1':'label3']`,注意标签切片是包含终止的。

不连续索引

当需要获取非连续行数据时,可以使用列表形式的索引:

- **标签索引**:`ser_obj[['label1','label2','label3']]` - **位置索引**:`ser_obj[[0,2,4]]`

实验:

第四节 Series的索引操作

import pandas as pdimport numpy as np
# 构建Seriesser_obj = pd.Series(range(5), index=['a','b','c','d','e'])ser_obj
# 行索引示例ser_obj['b']   # 获取标签'b'对应的值ser_obj.loc['b']  # 同样获取标签'b'对应的值
# 切片索引示例ser_obj[1:3]  # 获取索引1和2的数据ser_obj['b':'d']  # 标签切片,包含'd'
# 不连续索引示例ser_obj[[0,2,4]]  # 通过位置获取不连续数据ser_obj[['b','d']]  # 通过标签获取不连续数据

转载地址:http://mcla.baihongyu.com/

你可能感兴趣的文章
nrm报错 [ERR_INVALID_ARG_TYPE]
查看>>
NS3 IP首部校验和
查看>>
NSDateFormatter的替代方法
查看>>
NSError 的使用方法
查看>>
NSGA-Ⅲ源代码
查看>>
nsis 安装脚本示例(转)
查看>>
NSJSON的用法(oc系统自带的解析方法)
查看>>
nslookup 的基本知识与命令详解
查看>>
NSNumber与NSInteger的区别 -bei
查看>>
NSOperation基本操作
查看>>
NSRange 范围
查看>>
NSSet集合 无序的 不能重复的
查看>>
NSURLSession下载和断点续传
查看>>
NSUserdefault读书笔记
查看>>
NS图绘制工具推荐
查看>>
NT AUTHORITY\NETWORK SERVICE 权限问题
查看>>
NT symbols are incorrect, please fix symbols
查看>>
ntelliJ IDEA 报错:找不到包或者找不到符号
查看>>
NTFS文件权限管理实战
查看>>
ntko web firefox跨浏览器插件_深度比较:2019年6个最好的跨浏览器测试工具
查看>>